Proxima Centauri b - Closest Known Exoplanet

Proxima Centauri b - Closest Known Exoplanet
Artist's conception of Proxima Centauri b as a rocky-like exoplanet,
with Proxima Centauri and the Alpha Centauri binary system in the
background. The actual appearance of the planet is unknown.

Proxima Centauri b (also called Proxima b or Alpha Centauri Cb) is an exoplanet orbiting within the habitable zone of the closest star to the Sun - the red dwarf star Proxima Centauri, which is in a triple star system. It is located about 4.2 light-years (1.3 parsecs, 40 trillion km, or 25 trillion miles) from Earth in the constellation of Centaurus, making it the closest known exoplanet to the Solar System.

Proxima Centauri b orbits the star at a distance of roughly 0.05 AU (7,500,000 km; 4,600,000 mi) with an orbital period of approximately 11.2 Earth days and has an estimated mass of at least 1.3 times that of the Earth. Its habitability has not been established, though it is unlikely to be habitable since the planet is subject to stellar wind pressures of more than 2,000 times those experienced by Earth from the solar wind.
The discovery of the planet was announced in August 2016 by the European Southern Observatory.

Proxima Centauri b orbits its host star every 11.186 days at a semi-major axis distance of approximately 0.05 astronomical units (7,000,000 km; 5,000,000 mi), which means the distance from the exoplanet to its host star is one-twentieth of the distance from the Earth to the Sun.




The habitability of Proxima Centauri b has not been established since the planet is subject to stellar wind pressures of more than 2,000 times those experienced by Earth from the solar wind. This radiation and the stellar winds would likely blow any atmosphere away, leaving the undersurface as the only potentially habitable location on that planet.

The exoplanet is orbiting within the habitable zone of Proxima Centauri, the region where, with the correct planetary conditions and atmospheric properties, liquid water may exist on the surface of the planet. The host star, with about an eighth of the mass of the Sun, has a habitable zone between ∼0.0423–0.0816 AU. In October 2016, researchers at France's CNRS research institute stated that there is a considerable chance of the planet harbouring surface oceans and having a thin atmosphere. However, unless the planet transits in front of its star from the perspective of Earth, it is difficult to test these hypotheses.

Even though Proxima Centauri b is in the habitable zone, the planet's habitability has been questioned because of several potentially hazardous physical conditions. The exoplanet is close enough to its host star that it might be tidally locked. In this case, it is expected that any habitable areas would be confined to the border region between the two extreme sides, generally referred to as the terminator line, since it is only here that temperatures might be suitable for liquid water to exist. If the planet's orbital eccentricity is 0, this could result in synchronous rotation, with one hot side permanently facing towards the star, while the opposite side is in permanent darkness and freezing cold. However, Proxima Centauri b's orbital eccentricity is not known with certainty, only that it is below 0.35—potentially high enough for it to have a significant chance of being captured into a 3:2 spin-orbit resonance similar to that of Mercury, where Proxima b would rotate around its axis approximately every 7.5 Earth days with about 22.4 Earth days elapsing between one sunrise and the next. Resonances as high as 2:1 are also possible.



The European Southern Observatory estimates that if water and an atmosphere are present, a far more hospitable environment would result. Assuming an atmospheric N2 pressure of 1 bar and a ∼0.01 bar of CO2, in a world including oceans with average temperatures similar to those on Earth, a wide equatorial belt (non-synchronous rotation), or the majority of the sunlit side (synchronous rotation), would be permanently ice-free. A large portion of the planet may be habitable if it has an atmosphere thick enough to transfer heat to the side facing away from the star. If it has an atmosphere, simulations suggest that the planet could have lost about as much as the amount of water that Earth was due to the early irradiation in the first 100–200 million years after the planet's formation. Liquid water may be present only in the sunniest regions of the planet's surface in pools either in an area in the hemisphere of the planet facing the star or—if the planet is in a 3:2 resonance rotation—diurnally in the equatorial belt. All in all, astrophysicists consider the ability of Proxima Centauri b to retain water from its formation as the most crucial point in evaluating the planet's present habitability. The planet may be within reach of telescopes and techniques that could reveal more about its composition and atmosphere if it has any.

No comments:

Post a Comment

Share your veiw...!